層層疊物理題

層層疊物理題
Photo Credit: Depositphotos
我們想讓你知道的是

如果有無限多塊層層疊積木,從桌邊疊起來,最多可以伸出去多長?

記得以前中學物理課的時候,老師曾經出過一道問題,設層層疊積木的長為a,那麼在桌子邊把兩塊積木疊起來,最多可以令它們伸出桌邊多長的距離而不倒塌呢?這個問題其實不難,但史丹福被這問題吸引了,自己繼續思考︰如果把10塊層層疊積木疊起來,又最多可以伸到多長呢?如果有無限多塊層層疊積木,又最多可以伸到多長?

今次我們特意請來奶油貓Peaches為我們作出示範,解釋這條問題。

peaches
圖片由作者提供

首先,如果層層疊積木的密度平均的話,重心一定在最中間的一點。要令到積木不倒塌,重心就一定要被承托著。

放第一塊層層疊積木時,只要把它的重心放在桌邊,那麼它的重心被桌子承托著,便不會倒塌,所以伸出的長度是a/2。

peaches1
圖片由作者提供

當有兩塊層層疊積木時,第二塊積木的重心必須又第一塊積木承托著。把第二塊積木的重心放在第一塊積木的最右端,這時兩塊積木合共的重心(下圖中的紅色交叉)位於兩塊積木中間,把共同重心放在桌子邊上,層層疊積木伸出了多a/4,共伸出了3a/4。

peaches2
圖片由作者提供

但如果再加多幾塊積木,情況就開始複雜了。我們已經不能再在上面加積木,第三塊積木只要比第二塊伸出一點,三塊積木合共的重心就會伸到桌邊之外而倒下。但我們可以在下面放,把第三塊積木的最右端放在首兩塊積木的合共重心之下,然後把三塊積木的合共重心放在桌邊,這樣就可以把三塊積木放到最出。

留意,積木伸出的長度其實是最高一塊積木最右端與三塊積木合共重心的水平距離。 我們繼續用類似的方法去放第四塊、第五塊、…、第n塊積木,也就是把第n塊積木的最右端放在之前n-1塊積木的合共重心之下,再把全部n塊積木的合共重心放在桌子邊,這樣就可以伸到最出而不倒塌。

peachesn
圖片由作者提供

設放了第n塊積木後伸出的長度,也就是全部n塊積木的合共重心與最上面一塊積木最右端的水平距離為xn。 再放第n+1塊積木後,第n+1塊積木的重心與最上面一塊積木最右端的水平距離是xn + a/2。以下算出xn

jenga2
圖片由作者提供

回到文中最初的問題,要知道10塊層層疊積木疊起來伸到多長,只要代入我們剛得出的公式就可以了,大家可以自行試試。 另外,如果我們有無限多塊層層疊積木,理論上是可以伸到無限遠的,並沒有上限。 1+1/2+1/3+1/4+...是一個很有名的級數,它看起來好像會收斂(converge),但其實是發散(diverge)級數(編按︰即沒有上限)。因為︰

jenga
圖片由作者提供

無限個1/2加起來是發散的,1+1/2+1/3+1/4+…也自然是發散的。

本文獲授權轉載,原文見史丹福狂想曲

相關文章︰

責任編輯︰鄭家榆
核稿編輯︰王陽翎

或許你會想看
更多『評論』文章 更多『科學』文章 更多『史丹福』文章
Loader